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A B S T R A C T

A computationally efficient method for determining the response of non-linear stochastic dynamic systems
endowed with fractional derivative elements subject to stochastic excitation is presented. The method relies
on a spectral representation both for the system excitation and its response. Specifically, first the ordinary non-
linear differential equation of motion is transferred into a set of non-linear algebra equations by employing the
harmonic balance method. Next, the response Fourier coefficients are determined by solving these non-linear
equations. Finally, repeated use of the proposed procedure yields the response power spectral density. Pertinent
numerical examples, including a fractional Duffing and a bilinear oscillator, demonstrate the accuracy of the
proposed method.

1. Introduction

The determination of the stochastic response of nonlinear dynamic
systems subject to external stochastic excitations remains a challenge
for the reliability evaluation and risk assessment of engineering sys-
tems [1]. Appropriate modeling of the system dynamic characteristics
not only improves the model accuracy, but may also simplify the
methods adopted for stochastic dynamic analysis. As far as viscoelas-
ticity modeling in engineering application is concerned, the fractional
derivative concept has been extensively used in structural control [2];
consider the structural base isolation [3] for instance. An advantage of
the fractional modeling for the viscoelastic behavior lies in its compact
form. That is, compared to the classic standard mechanical models
(SMMs, series and/or parallel connection of dampers and springs),
fractional model needs fewer parameters to capture the time-domain
(creep and stress relaxation), and frequency-domain (loss and stor-
age modulus) material functions accurately and simultaneously [4].
In this regard, it may be argued that modeling by fractional deriva-
tives simplifies the methods adopted for system stochastic behavior
prediction.

This paper focuses on the stochastic response spectrum determina-
tion of non-linear dynamic systems endowed with fractional elements.
Research on this theme is relatively limited compared to its determin-
istic and/or linear counterparts. Specifically, for the fractional deter-
ministic linear response, Fourier transform [5], Laplace transform [6],
and the eigenvector expansion method [7,8] can be used for obtaining
analytical solutions under certain conditions. While on the other hand,
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for the fractional stochastic linear systems, it was proved in Ref. [9] that
in the frequency domain the response power spectral density (PSD) can
be determined by a standard procedure for integral-order derivatives
systems. As far as the time-domain solution is concerned, often the
double integration of the fractional impulse response function [10–12]
can be used, limiting its application only to systems with a few DOFs.
Study on the stochastic analysis of non-linear fractional system mainly
focuses on the extension of the classic stochastic method for integral-
order systems, including stochastic averaging, statistical linearization,
and path integral [13–17]. Similarly to their integral-order counterpart,
the applicability of these methods is usually problem dependent.

Undoubtedly, the most versatile method for stochastic system analy-
sis is the Monte Carlo simulation (MCS) [18]. This sampling-experiment
method, although quite time-consuming, for large-scale engineering
problems becomes increasingly important with the advent of modern
computational efficiency. Within this framework, several step-by-step
integration methods have been developed for determining sample re-
sponses of fractional systems [19]. They are named after the schemes
for discretizing the fractional and the integral-order derivatives [20].
For instance, the numerical method developed in Ref. [15] is, in fact, a
GL (Grünwal–Letnikov) based Newmark-𝛽 scheme; also see [20]. How-
ever, there are limitations to apply the time domain MCS for fractional
stochastic dynamic systems. Specifically, first weighting parameters of
all of the past steps should be updated, which may lead to a significant
increase in computational cost [3,15,20]. Besides, the duration of the
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equally spaced time step should be short enough to capture the high-
frequency content induced by the non-linear effect [21], and thus, more
discrete time steps are needed for a fixed time duration. In this context,
it may be argued that the time-domain MCS is not computationally
efficient for non-linear fractional systems, at least when compared to
their integer-order counterpart.

To address this problem, the paper presents a frequency-domain
MCS method for the response spectral density determination of non-
linear fractional systems subject to stochastic excitations. For this pur-
pose, following the procedure adopted by [21] and relying on the spec-
tral representation for the excitation and response, the multi-harmonic
balance method is utilized to recast the nonlinear fractional order
differential equation into a set of non-linear algebraic equations with
unknown response Fourier coefficients. These equations can be solved
readily by established numerical methods. Next, response spectral char-
acteristics can be estimated by repeated use of the proposed method. Fi-
nally, numerical examples including a Duffing and a bilinear oscillator
demonstrates the accuracy of the proposed method.

2. Discrete spectral representation of stochastic processes

The spectral representation method for stochastic processes can be
regarded as a stochastic extension of Fourier series of a deterministic
process. The method decomposes a stochastic signal into a summation
of an infinite number of harmonics weighting by random variables.
Specifically, a stationary stochastic process 𝑋 (𝑡), −∞ < 𝑡 < ∞ in the
wide sense with non-zero mean value and two-sided power spectral
density (PSD) 𝑆𝑋 (𝜔), can be approximately simulated as a random
combination of N -harmonics [22]

𝑋 (𝑡) ≈ 𝑐0 +
√

2
𝑁
∑

𝑛=1
𝑀𝑛 cos

(

𝜔𝑛𝑡 +𝛷𝑛
)

, (1)

where 𝑐0 is the deterministic mean value; 𝑀𝑛 =
[

2𝑆𝑋
(

𝜔𝑛
)

𝛥𝜔
]1∕2 is

the harmonic amplitudes; 𝜔𝑛 = 𝑛𝛥𝜔 is the discrete frequencies and
𝛥𝜔 = 𝜔𝑢∕𝑁 is the frequency sampling space; 𝑇0 = 2𝜋∕𝛥𝜔 is the
fundamental period; and 𝜔𝑢 is the cutoff frequency beyond which the
PSD 𝑆𝑋 (𝜔) can be assumed to be zero. The randomness of the process is
derived from the independent random phases 𝛷𝑛s which are uniformly
distributed in the interval [0, 2𝜋]. Further, it can be argued that when
𝑁 → ∞, and 𝛥𝜔 is sufficiently small, a stochastic process can be
adequately represented by Eq. (1) [22]. In this case, the expression
captures, in fact, a fundamental theorem proposed by Cramer [23]
regarding stationary stochastic process representation via two mutually
incremental orthogonal processes. Further expansion of Eq. (1) leads to

𝑋 (𝑡) ≈ 𝑐0 +
𝑁
∑

𝑛=1

(

𝐶𝑛 cos𝜔𝑛𝑡 +𝐷𝑛 sin𝜔𝑛𝑡
)

, (2)

where

𝐶𝑛 =
√

2𝑀𝑛cosΦ𝑛 = 2
[

𝑆𝑋
(

𝜔𝑛
)

𝛥𝜔
]
1
2 cosΦ𝑛,

(𝑛 = 1, 2,… , 𝑁) ,
(3)

𝐷𝑛 = −
√

2𝑀𝑛sinΦ𝑛 = −2
[

𝑆𝑋
(

𝜔𝑛
)

𝛥𝜔
]
1
2 sinΦ𝑛,

(𝑛 = 1, 2,… , 𝑁) .
(4)

It can be proved that 𝐶𝑛s and 𝐷𝑛s are independent random variables
with

E
[

𝐶𝑛
]

= E
[

𝐷𝑛
]

= 0, (5)

E
[

𝐶2
𝑛
]

= E
[

𝐷2
𝑛
]

= 2𝑆𝑋
(

𝜔𝑛
)

𝛥𝜔, (6)

E
[

𝐶𝑛𝐶𝑚
]

= E
[

𝐷𝑛𝐷𝑚
]

= 0 for 𝑛 ≠ 𝑚, (7)

and

E
[

𝐶𝑛𝐷𝑚
]

= 0 for any 𝑛 and𝑚 (8)

3. Harmonic balance solution of non-linear fractional systems

Next, consider a non-linear stochastic dynamic system endowed
with fractional derivative term governed by the equation

𝑚�̈� (𝑡) + 𝑐D𝑞
c [𝑋 (𝑡)] + 𝑘𝑋 (𝑡) + 𝜆𝑘𝐺

(

𝑋, �̇�
)

= 𝐹 (𝑡) , (9)

where 𝑚, 𝑐 = 2𝜁0𝑚𝜔
2−𝑞
𝑛 and k are the mass, damping and stiffness of

the system, respectively; 𝑞 represents the order of fractional derivative;
𝜔𝑛 =

√

𝑘∕𝑚 is the corresponding natural frequency; 𝜆 denotes a
parameter quantifying the non-linear intensity; the symbol ‘‘D’’ with
the subscript ‘‘c’’ denotes the fractional derivative of the system re-
sponse 𝑥 (𝑡) in the Caputo’s sense; 𝐺

(

𝑋, �̇�
)

is the non-linear component
in terms of displacement and velocity; and 𝐹 (𝑡) is a stochastic excitation
with PSD 𝑆𝐹 (𝜔). For further elucidation of the fractional derivative
concept, one may be found further in [24].

Similarly, the stochastic excitation process can be approximately
simulated by the spectral representation with a finite number of har-
monics shown in Eq. (2). That is,

𝐹 (𝑡) ≈ 𝑎0 +
𝑁
∑

𝑛=1
𝐴𝑛 cos𝜔𝑛𝑡 + 𝐵𝑛 sin𝜔𝑛𝑡, (10)

where 𝐴𝑛s and 𝐵𝑛s are independent random variables with the same
properties shown in Eqs. (5)–(8).

3.1. Formulation

Taking the second derivative of Eq. (2) leads to

�̈� (𝑡) =
𝑁
∑

𝑛=1

(

−𝜔2
𝑛𝐶𝑛 cos𝜔𝑛𝑡 − 𝜔2

𝑛𝐷𝑛 sin𝜔𝑛𝑡
)

. (11)

Further, the fractional derivatives of the response can be written as [25]

D𝑞
c [𝑋 (𝑡)] =

𝑐0
𝛤 (1 − 𝑞) 𝑡𝑞

+
𝑁
∑

𝑛=1

[

𝐶𝑛𝜔
𝑞
𝑛 cos

(

𝜔𝑛𝑡 +
𝜋
2
𝑞
)

+𝐷𝑛𝜔
𝑞
𝑛 sin

(

𝜔𝑛𝑡 +
𝜋
2
𝑞
)]

.
(12)

Different from the integer derivatives of a constant, the fractional
derivative of 𝑐0 in the Caputo’s sense does not equal zero. Substituting
Eqs. (11)–(12) into Eq. (9) yields Eq. (13) which is given in Box I Pro-
ceeding next to multi-harmonic balance on both sides of Eq., yields the
set of (2𝑁+1) algebraic equations (14)–(16) which are given in Box II
Clearly, the unknown response Fourier coefficients

(

𝑐0, 𝐶1, 𝐷1, 𝐶2, 𝐷2,
… , 𝐶𝑁 , 𝐷𝑁

)

can be obtained by solving the above set of algebraic
equations by established numerical methods.

3.2. Solution via Newton’s iterative method

Eqs. (14)–(16) are a set of coupled non-linear algebraic equations
with unknown response Fourier coefficients that can be readily solved
by numerical methods. Newton’s iterative method is adopted herein.
In this regard, one need to solve the following matrix equation for
obtaining the unknown quantities at the ith step. That is,

𝐊
(

α(𝑖)
)

+ 𝐉
(

α(𝑖)
) (

α(𝑖+1) − α(𝑖)
)

= 𝟎. (17)

According to Eqs. (14)–(16), the column vector K with 2𝑁+1 en-
tries can be written as Eqs. (18)–(20) which are given in Box III
Further, the (2𝑁 + 1) × (2𝑁 + 1) entries of the Jacobian matrix 𝐉 =
𝜕𝐊∕𝜕α are Eqs. (21)–(23) which are given in Box IV where α =
[

𝑐0, 𝐶1, 𝐷1, 𝐶2, 𝐷2,… , 𝐶𝑁 ,
𝐷𝑁

]T is a column vector with entries being unknown response Fourier
coefficients; 𝛿 denotes the Kronecker delta. Regarding the numerical
implementation of the proposed method, some comments are in order.
First, the Fourier integrations of the non-linear terms in Eqs. (19)–(23)
must be appropriately determined. This can be achieved by resorting
to the celebrated Fast Fourier Transform (FFT), which may produce the
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𝑚
𝑁
∑

𝑛=1

(

−𝜔2
𝑛𝐶𝑛 cos𝜔𝑛𝑡 −𝐷𝑛𝜔

2
𝑛 sin𝜔𝑛𝑡

)

+ 𝑐

{

𝑐0
𝛤 (1 − 𝑞) 𝑡𝑞

+
𝑁
∑

𝑛=1

[

𝐶𝑛𝜔
𝑞
𝑛 cos

(

𝜔𝑛𝑡 +
𝜋
2
𝑞
)

+𝐷𝑛𝜔
𝑞
𝑛 sin

(

𝜔𝑛𝑡 +
𝜋
2
𝑞
)]

}

+𝑘

{

𝑐0 +
𝑁
∑

𝑛=1

(

𝐶𝑛 cos𝜔𝑛𝑡 +𝐷𝑛 sin𝜔𝑛𝑡
)

}

+ 𝜆𝑘𝐺
(

𝑋, �̇�
)

= 𝑎0 +
𝑁
∑

𝑛=1

(

𝐴𝑛 cos𝜔𝑛𝑡 + 𝐵𝑛 sin𝜔𝑛𝑡
)

(13)

Box I.

𝑘𝑐0 +
𝑐𝑐0

𝑇0𝛤 (1 − 𝑞) ∫

𝑇0

0
𝑡−𝑞d𝑡 + 𝜆𝑘

𝑇0 ∫

𝑇0

0
𝐺
(

𝑋, �̇�
)

d𝑡 = 𝐴0, (14)

(

𝑘 − 𝑚𝜔2
𝑛
)

𝐶𝑛 + 𝑐𝜔𝑞
𝑛

(

𝐶𝑛 cos
𝜋𝑞
2

+𝐷𝑛 sin
𝜋𝑞
2

)

+
2𝑐𝑐0

𝑇0𝛤 (1 − 𝑞) ∫

𝑇0

0
𝑡−𝑞 cos𝜔𝑛𝑡d𝑡 +

2𝜆𝑘
𝑇0 ∫

𝑇0

0
𝐺
(

𝑋, �̇�
)

cos𝜔𝑛𝑡d𝑡 = 𝐴𝑛, (𝑛 = 1, 2,… , 𝑁) , (15)

(

𝑘 − 𝑚𝜔2
𝑛
)

𝐷𝑛 + 𝑐𝜔𝑞
𝑛

(

−𝐶𝑛 sin
𝜋𝑞
2

+𝐷𝑛 cos
𝜋𝑞
2

)

+
2𝑐𝑐0

𝑇0𝛤 (1 − 𝑞) ∫

𝑇0

0
𝑡−𝑞 sin𝜔𝑛𝑡d𝑡 +

2𝜆𝑘
𝑇0 ∫

𝑇0

0
𝐺
(

𝑋, �̇�
)

sin𝜔𝑛𝑡d𝑡 = 𝐵𝑛, (𝑛 = 1, 2,… , 𝑁) . (16)

Box II.

𝐾1 (α) =
𝜆𝑘
𝑇0 ∫

𝑇0

0
𝐺
(

𝑋, �̇�
)

d𝑡 + 𝑘𝑐0 +
𝑐𝑐0

𝑇0𝛤 (1 − 𝑞) ∫

𝑇0

0
𝑡−𝑞d𝑡 − 𝑎0, (18)

𝐾2𝑛 (α) =
(

−𝑚𝜔2
𝑛 + 𝑐𝜔𝑞

𝑛 cos
𝜋𝑞
2

+ 𝑘
)

𝛼2𝑛 +
(

𝑐𝜔𝑞
𝑛 sin

𝜋𝑞
2

)

𝛼2𝑛+1 +
2𝑐𝑐0

𝑇0𝛤 (1 − 𝑞) ∫

𝑇0

0
𝑡−𝑞 cos𝜔𝑛𝑡d𝑡 +

2𝜆𝑘
𝑇0 ∫

𝑇0

0
𝐺
(

𝑋, �̇�
)

cos𝜔𝑛𝑡d𝑡 − 𝐴𝑛,

(𝑛 = 1, 2,… , 𝑁) ,
(19)

𝐾2𝑛+1 (α) =
(

−𝑚𝜔2
𝑛 + 𝑐𝜔𝑞

𝑛 cos
𝜋𝑞
2

+ 𝑘
)

𝛼2𝑛+1 −
(

𝑐𝜔𝑞
𝑛 sin

𝜋𝑞
2

)

𝛼2𝑛 +
2𝑐𝑐0

𝑇0𝛤 (1 − 𝑞) ∫

𝑇0

0
𝑡−𝑞 sin𝜔𝑛𝑡d𝑡 +

2𝜆𝑘
𝑇0 ∫

𝑇0

0
𝐺
(

𝑋, �̇�
)

sin𝜔𝑛𝑡d𝑡 − 𝐵𝑛,

(𝑛 = 1, 2,… , 𝑁) .
(20)

Box III.

𝐽1,𝑗 =
𝜆𝑘
𝑇0 ∫

𝑇0

0

(

𝜕𝐺
𝜕𝑋

𝜕𝑋
𝜕𝛼𝑗

+ 𝜕𝐺
𝜕�̇�

𝜕�̇�
𝜕𝛼𝑗

)

d𝑡 +
⎛

⎜

⎜

⎝

𝑘 +
𝑐 ∫ 𝑇0

0 𝑡−𝑞d𝑡
𝑇0𝛤 (1 − 𝑞)

⎞

⎟

⎟

⎠

𝛿1,𝑗 , (𝑗 = 1, 2,… , 2𝑁 + 1) , (21)

𝐽2𝑛,𝑗 =
(

−𝑚𝜔2
𝑛 + 𝑐𝜔𝑞

𝑛 cos
𝜋𝑞
2

+ 𝑘
)

𝛿𝑗∕2,𝑛 +
(

𝑐𝜔𝑞
𝑛 sin

𝜋𝑞
2

)

𝛿(𝑗−1)∕2,𝑛 +
2𝜆𝑘
𝑇0 ∫

𝑇0

0

(

𝜕𝐺
𝜕𝑋

𝜕𝑋
𝜕𝛼𝑗

+ 𝜕𝐺
𝜕�̇�

𝜕�̇�
𝜕𝛼𝑗

)

cos𝜔𝑛𝑡d𝑡,

(𝑛 = 1, 2,… , 𝑁 ; 𝑗 = 1, 2,… , 2𝑁 + 1) ,
(22)

and

𝐽2𝑛+1,𝑗 =
(

−𝑐𝜔𝑞
𝑛 sin

𝜋𝑞
2

)

𝛿𝑗∕2,𝑛 +
(

−𝑚𝜔2
𝑛 + 𝑐𝜔𝑞

𝑛 cos
𝜋𝑞
2

+ 𝑘
)

𝛿(𝑗−1)∕2,𝑛 +
2𝜆𝑘
𝑇0 ∫

𝑇0

0

(

𝜕𝐺
𝜕𝑋

𝜕𝑋
𝜕𝛼𝑗

+ 𝜕𝐺
𝜕�̇�

𝜕�̇�
𝜕𝛼𝑗

)

sin𝜔𝑛𝑡d𝑡,

(𝑛 = 1, 2,… , 𝑁 ; 𝑗 = 1, 2,… , 2𝑁 + 1) ,
(23)

Box IV.

so-called aliasing effect. This effect can be circumvented numerically by
padding requisite zeros to the response Fourier coefficients α [21,26],
but this procedure increases significantly the requisite computational
cost. A better choice which not only circumvents the aliasing effect, but
it also improves computational efficiency is the closed form solution
for the Fourier integrals of polynomial non-linearities [21]. Second,
as far as arbitrary nonlinearity is concerned, the proposed method
can be applied to an equivalent cubic polynomial whose coefficients
are determined by a least square fitting method on the period

[

0, 𝑇0
]

.
Next, the first term on the right side of Eq. (12) derived from the
fractional derivative of the response mean value 𝑐0, barely increases
the computational time of Newton’s iteration procedure. This is due

the fact that the term does not include any unknown entry of α and
only contributes to very low-frequency content.

4. Numerical examples

4.1. Duffing oscillator application

To assess the usefulness of the proposed method for the response
determination of stochastic dynamic systems, a fractional Duffing os-
cillator

𝑚�̈� (𝑡) + 𝑐𝐷𝑞
c [𝑋 (𝑡)] + 𝑘𝑋 (𝑡) + 𝜆𝑘𝑋3 = 𝐹 (𝑡) (24)
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Fig. 1. Variation of the response standard deviation 𝜎𝑋0 of the normalized linear
system with fractional order q.

with a non-linear polynomial term

𝐺
(

𝑋, �̇�
)

= 𝑋3 (25)

is next considered. As an illustrative case, a stochastic excitation with
invariable PSD is investigated first. Specifically, consider the equation
of motion with normalized parameters

�̈� (𝜏) + 2𝜁𝐷𝑞
𝑐 [𝑋 (𝜏)] +𝑋 (𝜏) + 𝜆𝑋3 = 𝐹𝑛 (𝜏) , (26)

where 𝐹𝑛 (𝜏) = 𝐹
(

𝜏∕𝜔𝑛
)

∕
(

𝜔2
𝑛𝜎𝑋0

)

is white noise with 𝑆𝐹 (𝜔) = 𝑆0;
𝜎𝑋0 is the displacement standard derivation of the fractional linear
oscillator corresponding to Eq. (24). It can be proved that for the
integer-order non-normalized linear oscillator (i.e., setting 𝜆 = 0, 𝑞 = 1
in Eq. (24)) the standard deviation 𝜎𝑋0 =

(

𝜋𝑆0∕
(

2𝜁𝜔3
𝑛
))1∕2. Fig. 1

shows the variation of 𝜎𝑋0 calculated by the numerical integration of
the displacement PSD versus the fractional order 𝑞.

Considering the system parameters 𝜁 = 0.2 and 𝜆 = 1, a representa-
tive displacement time history and the corresponding Fourier amplitude
spectrum calculated by the proposed method are shown in Fig. 2.
For the numerical application of the proposed method, the considered
frequency domain [0,10] rad/s is divided into equally spaced intervals
with 𝛥𝜔 = 0.1. The linear response of the fractional Duffing oscillator
subject to the same excitation when 𝜆 = 0 is also plotted to indicate the
nonlinear effect. It is seen from Fig. 2(a) that the time histories obtained
by the proposed method and the L1 algorithm [3] agree well with each
other, except at the beginning of the response due to the neglect of the
initial conditions. Further, the significant difference between the linear
and the nonlinear response shows that the non-linearity represented by
𝜆 = 1 is quite large. Fig. 2(b) shows the non-linearity has the effect of
shifting the response Fourier spectrum to the right side of the frequency
axis.

The proposed method can be used for response PSD determination
by repeatedly calculating the response Fourier coefficients of samples
excitations. For the present example, the response PSD is estimated
over 100 realizations of response Fourier coefficients. An ensemble
with the same number of response samples determined by the non-
linear L1 algorithm in the time domain is also utilized to estimate
response PSD. A short time step 𝛥𝑡 = 0.02 is used in the non-linear
L1 algorithm to avoid the possible aliasing effect induced by the non-
linearity. Further, the statistical linearization (SL) method for fractional
non-linear systems developed by Spanos and Evangelatos [27] is used
for demonstrating the accuracy and efficiency of the proposed method.
Specifically, for the fractional SL method, consider a non-linear system

𝑚�̈� (𝑡) + 𝑐D𝑞
c [𝑋 (𝑡)] + 𝑔 (𝑡) = 𝐹 (𝑡) , (27)

Fig. 2. (a) Response time history and (b) the corresponding Fourier amplitude spectrum
of a Duffing oscillator subject to a sample of white noise when 𝜆 = 1.

where 𝑔 (𝑡) = 𝑘 [𝑥 + 𝜆𝐺 (𝑥)] denotes the non-linear restoring force;
𝐺 (𝑥) =

∑

odd 𝑙 𝑏𝑙𝑥
𝑙 is a non-linear function including only odd poly-

nomial of response 𝑥 (𝑡); for the non-linearity of the Duffing kind in
this case 𝑙 = 3. The response PSD can be determined by solving the
equations

𝑆𝑋 (𝜔) = |𝐻 (𝜔)|2 𝑆𝐹 (𝜔) 𝑘eq = 𝑘

(

1 + 𝜆
∑

odd 𝑙
𝑙𝑏𝑙𝐴𝑙

)

, (28)

where 𝐻 (𝜔) is the frequency response function of the equivalent linear
system written as

𝐻 (𝜔) = 1
−𝑚𝜔2 + 𝑘eq + 𝑐 (𝑖𝜔)𝑞

, (29)

and 𝑘eq denotes the equivalent stiffness coefficient; 𝐴𝑙 is the lth re-
sponse moment

𝐴𝑙 =
1

𝜋1∕2

(
√

2𝜎𝑥
)𝑙−1

𝛤
( 𝑙
2

)

. (30)

Fig. 3 shows the two-sided response PSD obtained by the three
methods with four different values of 𝜆. It is seen from all the figures
that the response PSDs calculated by the proposed method agrees with
the ones calculated by the time-domain MC simulation quite well.
From Fig. 3(a)–(b) one may observe that the SL slightly underestimates
the dominant frequency when the 𝜆 is comparatively small. From
Fig. 3(c)–(d) it is observed that the statistical linearization method

4



www.manaraa.com

F. Kong and P.D. Spanos Probabilistic Engineering Mechanics 59 (2020) 103023

Fig. 3. Response PSD of the Duffing oscillator subject to white noise obtained by
repeated use of the proposed method, the time-domain Monte Carlo simulation and
the statistical linearization when (a) 𝜆 = 0.01, (b) 𝜆 = 0.5 (c) 𝜆 = 1.5 and (d) 𝜆 = 2.

yields response PSDs with higher amplitudes than the other two meth-

ods as increasing non-linearity 𝜆. Further, the value of the dominant

Fig. 4. Normalized displacement standard deviation 𝜎𝑌 versus the nonlinearity strength
𝜆.

frequency increases, and the related spectral content becomes wider
with increasing 𝜆. This feature was observed and explained from an
alternative perspective by Spanos, Kougioumtzoglou and et al. [27]
in the context of the integer-order Duffing oscillator. Fig. 4 provides
a comparison of the response standard deviation calculated by the
proposed method, the MC simulation, and the statistical linearization,
respectively, at different values of 𝜆. It is seen that the proposed method
agrees with time domain MCS quite well for all situations.

To further examine the applicability of the proposed method for
the Duffing oscillator subject to colored noise, consider a stochastic
excitation with the two-sided spectrum

𝑆𝐹 (𝜔) = 𝑆0

4𝜁2g𝜔
2
g𝜔

2

(

𝜔2
g − 𝜔2

)2
+ 4𝜁2g𝜔2

g𝜔2
, (31)

where 𝜁𝑔 = 0.1 and 𝜔𝑔 = 4 rad∕s relates to the damping and stiffness of
a pre-filter; 𝑆0 = 1 is the white noise PSD strength. The parameters
related to the oscillator are chosen as 𝑚 = 1, 𝜁0 = 0.2, 𝜔𝑛 = 1 and
𝑞 = 0.75. Similar results as in the white noise case are observed,
regarding the representative non-linear sample displacements obtained
by the proposed method and the non-linear L1 algorithms. Further,
the considerable difference between a sample non-linear response and
the corresponding linear response (when 𝜆 = 5) supports the appli-
cability of the proposed method in treating oscillators with strong
non-linearities subject to colored noise. It is worth mentioning that
the convergence rate of the Newton’s algorithm is quite fast for a
typical sample that four to five iterations are enough to obtain a
convergent result. To investigate the applicability of the proposed
method in predicting response PSD of the Duffing oscillator subject
to stochastic excitation with colored spectrum, the response Fourier
coefficients of 100 samples are used. Fig. 5(a) – (d) shows the response
PSD of the oscillator obtained by the proposed method, the time domain
MCS and the statistical linearization with different values of 𝜆. It is
seen that the results obtained by the proposed method agree well
the ones estimated by the MCS, whereas the statistical linearization
underestimates the first dominant frequency. Spectral broadening as
increasing non-linearity is also observed in this numerical case.

Fig. 6 shows a comparison of the 𝜎𝑋 -𝜆 curve calculated by the pro-
posed method and the Monte Carlo simulation. Similar to the previous
white noise case, the proposed method agrees with the MC simulation
quite well.

5
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Fig. 5. Response PSD obtained by repeated use of the proposed method, the time-
domain Monte Carlo simulation and the statistical linearization when (a) 𝜆 = 0.01, (b)
𝜆 = 1, (c) 𝜆 = 5 and (d) 𝜆 = 10.

Fig. 6. Variation of the displacement standard deviation 𝜎𝑋 versus the nonlinearity
strength 𝜆 of a fractional Duffing oscillator subject to a colored noise.

4.2. Bilinear oscillator application

To show the applicability of the proposed method to other nonlinear
systems, the bilinear oscillator

𝑚�̈� (𝑡) + 𝑐𝐷𝑞
𝑐 [𝑋 (𝑡)] + 𝑘𝑋 (𝑡) + 𝜆𝑘𝐺 (𝑋) = 𝐹 (𝑡) , (32)

where

𝐺 (𝑋) = 𝛾1𝑋 +
(

𝛾2 − 𝛾1
)

(𝑋 − sgn (𝑋) 𝑎)𝑈 (|𝑋| − 𝑎) (33)

is used as an example. Further, the coefficients 𝛾1 = 𝑘1∕𝑘 and 𝛾2 = 𝑘2∕𝑘
are the pre- and post-stiffness ratio of the bilinear characteristic, respec-
tively; sgn (⋅) is the symbolic function; 𝑈 (⋅) is the unit step function; 𝜆
is a constant denoting the strength of the bilinear non-linearity and 𝑎
is the critical displacement at which the yield occurs. Eq. (32) can be
normalized by setting 𝑦 = 𝑥∕𝑎 and 𝜏 = 𝜔𝑛𝑡. That is,

�̈� (𝜏) + 2𝜁0𝐷𝑞
𝑐 [𝑦 (𝜏)] + 𝑦 + 𝜆𝐺 [𝑦 (𝜏)] = 𝐹𝑛 (𝜏) , (34)

where

𝐺 (𝑦) = 𝛾1𝑦 +
(

𝛾2 − 𝛾1
) [

𝑦 − sgn (𝑦)
]

𝑈 [|𝑦| − 1] (35)

and

𝐹𝑛 (𝜏) =
𝐹 (𝑡)
𝑎𝜔2

𝑛
. (36)

Further, the parameters are chosen as 𝑚 = 1, 𝜁0 = 0.2, 𝜔𝑛 = 𝜔1 = 1
and 𝜔2 =

√

2𝜔1, where 𝜔𝑛 =
√

𝑘∕𝑚, 𝜔1 =
√

𝑘1∕𝑚, 𝜔2 =
√

𝑘2∕𝑚, and
𝜁0 = 𝑐∕

(

2𝑚𝜔𝑞
𝑛
)

. The yield displacement 𝑎 is chosen as the response
standard deviation 𝜎𝑥0 of the corresponding fractional linear system
response subject to 𝐹 (𝑡). Therefore, for the normalized system with
weak nonlinearity, both the response standard deviation and the switch
displacement equal to 1.

The polynomial fitting technique is adopted herein to make feasible
to apply the multi-harmonic balance method described in Section 3
for arbitrary nonlinearities. For this purpose, the bilinear characteristic
shown in Eq. (35) can be replaced by a complete cubic polynomial of
𝑋. That is
𝐺 (𝑋) =

[

𝛾1𝑥 +
(

𝛾2 − 𝛾1
)

(𝑋 − sgn (𝑋) 𝑎)𝑈 (|𝑋| − 𝑎)
]

= 𝑐0 + 𝑐𝑒𝑋 + 𝑐1𝑋2 + 𝑐4𝑋3,
(37)

where 𝑐0, 𝑐𝑒, 𝑐1, 𝑐4 are the polynomial coefficients for the generic poly-
nomial nonlinearity; see also Ref. [21] for details. Note that the re-
sponse mean value of the antisymmetric bi-linear oscillator equals to
zero. For this case, although it is not necessary to incorporate 𝑐0 and
𝑐1𝑋2 in the fitting polynomial, they are included herein explicitly for

6
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Fig. 7. Response PSD of the bilinear oscillator subject to a white noise obtained by
repeated use of the proposed method and by the time-domain Monte Carlo simulation
when (a) 𝜆 = 0.01, (b) 𝜆 = 0.5 (c) 𝜆 = 1.5 and (d) 𝜆 = 2.

Fig. 8. Variation of the nonlinearity strength 𝜆 with the normalized displacement
standard deviation 𝜎𝑌 of a normalized bilinear system subject to white noise.

the general nonlinear systems. Therefore, at each step of the New-
ton’s method, the polynomial coefficients need to be updated via the
mean-square error minimization criterion on the time interval under
consideration

min
𝑐𝑒 ,𝑐𝑗 ∫

𝑇0

0

[(

𝑐0 + 𝑐𝑒𝑋 + 𝑐1𝑋
2 + 𝑐4𝑋

3) − 𝐺 (𝑋)
]2 d𝑡. (38)

The preceding equation yields a set of algebraic equations

⎡

⎢

⎢

⎢

⎢

⎣

𝑎11 𝑎12 𝑎13 𝑎14
– 𝑎22 𝑎23 𝑎24
– – 𝑎33 𝑎34
– – – 𝑎44

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐0
𝑐𝑒
𝑐1
𝑐4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏1
𝑏2
𝑏3
𝑏4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (39)

where the entries in the symmetrical coefficient matrix are

𝑎𝑗𝑙 =
1
𝑇0 ∫

𝑇0

0
𝑋𝑗+𝑙−2d𝑡, 𝑗, 𝑙 = 1, 2, 3, 4. (40)

Further, 𝑏𝑗s are

𝑏𝑗 =
1
𝑇0 ∫

𝑇0

0
𝜆𝐺 (𝑋)𝑋𝑗−1d𝑡, 𝑗 = 1, 2, 3, 4. (41)

Eq. (40) can be evaluated exactly, since the integrand function is a
product of harmonics. Eq. (41) can be calculated using a standard
trapezoidal rule.

Consider first the situation with the white noise excitation. In the
numerical implementation of the proposed method, the frequency in-
terval under consideration is divided into equally spaced sub-intervals
with 𝛥𝜔 = 0.1 rad/s. The simulated record is obtained by a modified
nonlinear L1 algorithm where an iterative technique is used to locate
the time instant of the stiffness switching. Fig. 7(a)–(d) illustrate the
results pertaining to the two-sided PSD of the displacement obtained
by the two method at different values of 𝜆. The proposed method and
the time-domain MCS, both performed over 100 sample response, yield
close results. Further, Fig. 7(a)–(d) show that the PSDs become flatter
with abundant frequency content as increasing non-linear strength. A
good agreement between the proposed method and the MC simulation
in terms of displacement standard deviation is observed in Fig. 8,
where 𝜎𝑌 decreases with increasing 𝜆. As in the case of a Duffing
oscillator, it is found that the proposed method is more efficient than
the time-domain simulation.

Consider last a numerical example of the bilinear oscillator subject
to colored noise. The oscillator parameters are chosen to be the same as
in the preceding example subject to white noise. The colored noise with
the two-sided spectrum shown in Eq. (31) is utilized for illustration.
Figs. 9 and 10 show the comparisons of response PSDs and standard

7
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Fig. 9. Response PSD obtained by the repeated use of the proposed method and by
the time-domain MCS when (a) 𝜆 = 0.01, (b) 𝜆 = 1, (c) 𝜆 = 2 and (d) 𝜆 = 5.

deviations obtained by the two methods, both performed over 100
samples, at different values of 𝜆, respectively. Similarly, it is observed
from all the figures that the proposed method exhibits reasonable

Fig. 10. Displacement standard deviation 𝜎𝑋 of the bilinear system subject to a colored
noise versus the nonlinearity strength 𝜆.

accuracy comparing to the related simulation results. Note that the
growing nonlinear strength induces a shift of the first frequency but
has no effect on the second dominant frequency.

5. Concluding remarks

A spectral representation method for determining the spectral den-
sity of the stochastic response of the non-linear systems endowed with
fractional derivative terms has been proposed. For this purpose, a
spectral approximation for the response/excitation, and the harmonic
balance method has been used to derive a set of non-linear algebraic
equations for the coefficients of the spectral representation. Oscillators
with cubic and bi-linear nonlinearity have been considered as examples
to demonstrate the usefulness of the proposed method for sample
response. The proposed method provides an alternative highly efficient
frequency-domain procedure in the framework of MCS of the response
PSD for fractional non-linear systems.

An extension of the proposed method may include application to
multi-degree-of-freedom or/and hysteresis systems. Further, consider-
ing the time-frequency joint resolution of wavelets, another extension
of the method to treat to the full non-stationary system response using
wavelet-Galerkin based representations can be pursued.

Nomenclature
𝐴𝑛, 𝐵𝑛 = stochastic Fourier coefficients of the nth

harmonic component of 𝐹 (𝑡)
𝐶𝑛, 𝐷𝑛, 𝐶𝑚, 𝐷𝑚 = stochastic Fourier coefficients of the nth

harmonic component of 𝑋 (𝑡)
D𝑞
c = fractional derivative of order q in the

Caputo’s sense
𝐹 (𝑡) = stochastic excitation
𝐹𝑛 (𝜏) = normalized stochastic excitation
𝐺 (⋅) = non-linear restoring force of the dynamic

system
𝐻 (𝜔) = frequency response function of a equivalent

linear system
J = (2𝑁 + 1) × (2𝑁 + 1) Jacobian matrix
𝐊 = matrix equations ((2𝑁 + 1) × 1 column)
𝑀𝑛 = amplitude of the 𝑛th harmonic in spectral

representation
𝑁 = number of harmonic used in spectral

representation

8
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𝑆0 = power spectral density of white noise
𝑇0 = time duration of the stochastic

excitation/response under consideration
𝑈 (⋅) = unit step function
𝑋 (𝑡) = stationary stochastic response
�̈� (𝑡) = second derivative of 𝑋 (𝑡)
𝑎 = yield displacement of the bilinear

characteristic
𝑎0 = mean value of 𝐹 (𝑡)
𝑏𝑙 = coefficient of the polynomial expansion of

non-linear stiffness
𝑐, 𝑐𝑒, 𝑐1, 𝑐4 = polynomial coefficients for the generic

nonlinearity
𝑐 = damping coefficient of a dynamic system
𝑐0 = mean value of 𝑋 (𝑡)
𝑔 (𝑡) = restoring force
i = imaginary unit
𝑘, 𝑘eq, 𝑘1, 𝑘2 = stiffness, equivalent stiffness, pre- and

post-yield stiffness
𝑚 = mass
sgn (⋅) = symbolic function
𝑦 (𝜏) = normalized response
𝛤 (⋅) = Gamma function
𝛥𝜔 = sampling frequency step
𝛷𝑛 = phase of the nth harmonic component
α = column vector

[

𝑐0, 𝐶1, 𝐷1, 𝐶2, 𝐷2,… , 𝐶𝑁 , 𝐷𝑁
]T

𝛾1, 𝛾2 = pre- and post-yield stiffness ratio
𝛿 (⋅) = Dirac delta function
𝜁 = damping ratio
𝜁𝑔 = filter damping ratio
𝜆 = non-linearity strength
𝜎𝑋0 = standard deviation of a linear system
𝜎𝑋 = response standard deviation
𝜔𝑔 = filter frequency
𝜔1, 𝜔2 = frequencies correspond to pre- and post-yield

stiffness
𝜔n = natural frequency of a linear system
𝜔𝑛 = frequency of the nth harmonic component
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Appendix. Fourier coefficient of the slowly varying term

Consider the Fourier integrals in Eq. (19)

𝑈𝑛 =
2
𝑇0 ∫

𝑇0

0
𝑡−𝑞 cos𝜔𝑛𝑡d𝑡

𝑉𝑛 =
2
𝑇0 ∫

𝑇0

0
𝑡−𝑞 sin𝜔𝑛𝑡d𝑡

(A.1)

To obtain an explicit solution for Eq. (A.1), one may invoke the
corresponding Fourier transform

𝑊 (𝜔) = ∫

∞

−∞
𝑡−𝑞𝑒−𝑖𝜔𝑡d𝑡 = 𝛤 (1 − 𝑞) (𝑖𝜔)𝑞−1 (A.2)

and consider the relationship between the sample values of continuous
Fourier transform and discrete Fourier coefficients. That is

𝑈𝑛 =
2
𝑇0

Re
[

𝑊
(

𝜔𝑛
)]

=
2𝛤 (1 − 𝑞)

𝑇0
𝜔𝑞−1
𝑛 cos

𝜋 (𝑞 − 1)
2

(A.3)

𝑉𝑛 =
2
𝑇0

Im
[

𝑊
(

𝜔𝑛
)]

=
2𝛤 (1 − 𝑞)

𝑇0
𝜔𝑞−1
𝑛 sin

𝜋 (𝑞 − 1)
2

(A.4)

Numerical integration method or the Fast Fourier Transform (FFT) can
also be utilized to calculate the Fourier coefficients and to validate the
analytical solutions. Specifically, to avoid the instability that may be
caused by the singular point 𝑡 = 0, a numerical integration method can
be developed based on

𝑈𝑛 = lim
𝜀1→0

[

2
𝑇0

(

𝜀1−𝑞1
1 − 𝑞

)

+ 2
𝑇0 ∫

𝑇0

𝜀1
𝑡−𝑞 cos𝜔𝑛𝑡d𝑡

]

(A.5)

𝑉𝑛 = lim
𝜀2→0

2
𝑇0 ∫

𝑇0

𝜀2
𝑡−𝑞 sin𝜔𝑛𝑡d𝑡 (A.6)
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